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Characteristic-based finite-difference and finite-volume schemes
have been developed for solving the three-dimensional Maxwell
equations in the time domain. A detailed eigenvector analysis for
the Maxwell equations in a general curvilinear coordinate has also
been completed to provide a basic framework for future finite-differ-
ence schemes. Although the basic concepts of the two algorithms
are identical, the detailed formulations are vastly different for
achieving split flux vectors according to the sign of the eigenvalues.
A comparative study of these algorithms applied to an oscillating
electric dipole is carried out to assess their relative merit for further
development. In spherical coordinates, second-order windward nu-
merical simulations of the radiating phenomenon are closely com-
parable in terms of accuracy and efficiency. These methods also
demonstrate an ability to suppress reflected waves from the trun-
cated boundary by a simple compatibility condition. Q 1996 Aca-

demic Press, Inc.

NOMENCLATURE

B Magnetic flux density
D Electric displacement
E Electric field intensity
F Flux vector component
H Magnetic field intensity
i, j, k Index of discretization
J Electric current density
n Temporal index of solution
S Similarity transformation matrix
t Time
x, y, z Cartesian coordinates
r, u, f Spherical coordinates
U Dependent variables
V Jacobian of coordinate transformation
« Electric permittivity
e Magnetic permeability
l Eigenvalue
j, h, z Transformed coordinates

Superscript

1 Denotes association with positive ei-
genvalue

2 Denotes association with negative ei-
genvalue

21 Denotes matrix inverse operation

I. INTRODUCTION

The Maxwell equations in the time domain constitute a
hyperbolic partial differential system which is a pure initial-
value problem. Simulations of the electromagnetic phe-
nomenon by solving the basic equations on a computer
system are always limited by the memory size. This con-
straint compels the calculations to be conducted in a trun-
cated computational domain, which unavoidably intro-
duces an artificial boundary to an initial-value problem.
This artifact has been known to induce spurious wave re-
flections from the truncated boundary and to incur sizable
numerical errors [1–3]. In oder to eliminate or to alleviate
the wave reflection from numerical boundaries, either a
compatibility condition derived from the characteristic the-
ory [4, 5], or an absorbing boundary condition [6–8] is
frequently implemented at the farfield boundary. The char-
acteristic based concept of compatibility is preferred over
the others, because the numerical procedure also enforces
the directional propagation of information for wave mo-
tion. In essence, the characteristic formulation honors the
physical zone of dependence.

A body-oriented, curvilinear coordinate system can
greatly facilitate the computation of an electromagnetic
field around a complex scatterer. The time dependent Max-
well equations can be cast in a general curvilinear coordi-
nate system by a coordinate transformation from the
Cartesian frame of reference. In the transformed space,
the metrics of coordinate transformation are position de-
pendent and the system of equations will have variable
coefficients. As a direct consequence, the characteristic-
based formulation is no longer reducible to the Riemann
problem [5, 9, 10]. The rather complex eigenvalue and
eigenvector structure of the Maxwell equations has also
inhibited a systematic discretization effort. For this reason,
some finite-difference schemes, when applied to a non-
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rectangular scatterer, rely on an interpolation procedure
to satisfy the boundary conditions [1].

A viable alternative to this approach is to employ the
finite-volume approximation, in which a detailed eigenvec-
tor analysis in the transformed domain is unnecessary [2,
10]. On a general curvilinear frame, the finite-volume for-
mulation requires only a locally orthogonal coordinate sys-
tem on control surfaces to balance the flux vectors across
each cell. The Cartesian frame is the most elementary
orthogonal set, which is also the present coordinates of
reference. The eigenvalues and eigenvectors of the locally
orthogonal coordinates are nearly identical to those of
the Cartesian frame [10], so an elaborate eigenvalue and
eigenvector analysis is completely circumvented. For this
reason, the development of characteristic-based finite-vol-
ume schemes preceded that of finite-difference methods
[2, 10]. For all finite-volume approximations, the required
metric information is generated exclusively from vertexes
and edges of the elementary cell. At the cell surfaces,
the reconstruction of the flux vector involves either an
interpolation or an extrapolation procedure to achieve
higher order accuracy [10–14]. The numerical accuracy of
a finite-volume scheme is therefore dictated by the metrics
and the reconstructed flux calculations.

The finite-volume scheme is generally devoid of discreti-
zation error due to a non-conservative formulation [15].
However, for computational electromagnetics, there is no
overly significant advantage of a strong conservative for-
mulation. Except for the relationship between electric
charge and current density, Maxwell equations do not ex-
plicitly describe a conservative law [16–18]. For most prob-
lems, sources of electromagnetic fields are prescribed and
this conservation law is automatically satisfied [16]. The
finite-volume scheme also has an inherent emphasis in
describing the global behavior of a simulated field. There-
fore, this scheme has a greater capacity for reproducing
rapid variations induced by a geometric singularity than
the finite-difference scheme. On the other hand, the issue
of numerical accuracy of finite-volume algorithms becomes
more acute when implemented on a highly stretched and
non-rectangular cell structure. The empirical rule of thumb
is that the numerical result will be degraded slightly, even
though the formal order of accuracy is reduced [14]. Under
this circumstance, the quantification of numerical accuracy
is uncertain but needs a concise delineation for future ap-
plications.

The present study attempts to compare directly two char-
acterisic-based finite-difference and finite-volume algo-
rithms for solving the Maxwell equations in the time do-
main. Since a finite-volume flux differencing numerical
procedure has been implemented previously [2], only the
finite-difference flux vector splitting algorithm [19] is im-
plemented for the time-dependent, three-dimensional
Maxwell equations. The prerequisite of this development

is to conduct detailed eigenvalue and eigenvector analyses
for the time-dependent Maxwell equations in each individ-
ual coordinate of the transformed space. The equations
in flux vector form are split according to the sign of the
eigenvalues and solved by a second-order accurate upwind
difference technique. The rest of the present efforts are
devoted to examining the relative accuracy and aliasing
errors in simulating a time dependent electromagnetic phe-
nomenon. The numerical results will be compared with
theory for wave propagation in a rectangular wave guide
and from an oscillating electric dipole [17, 18]. Computa-
tions have been simulated using the Cartesian frame and
a spherical coordinate system, respectively.

II. GOVERNING EQUATIONS

The time-dependent Maxwell equations for an electro-
magnetic field can be given as [16–18]

­B
­t

1 = 3 E 5 0 (1)

­D
­t

2 = 3 H 5 2 J (2)

= ? B 5 0, B 5 eH (3)

= ? D 5 0, D 5 «E. (4)

In a Cartesian frame, the system of equations written in
flux vector form becomes [4, 5, 10]

­U
­t

1
­Fx

­x
1

­Fy

­y
1

­Fz

­z
5 2 J (5)

The one-dimensional, characteristic-based formulation is
easily constructed from the eigenvalue and eigenvector
analysis. The essential diagonalization process is simply to
construct a non-singular similarity matrix and its left-hand
inverse from the eigenvectors in each spatial dimension
[4, 5, 9]. In a Cartesian frame, the Maxwell equations for
an isotropic and homogeneous medium have constant coef-
ficients. Thus, all eigenvalues and eigenvectors are invari-
ant with respect to independent variables. The resultant
split one-dimensional equations for the three-dimensional
problem are completely decoupled and consist of 12 scalar
Riemann equations [4, 5]. In this formulation, accurate
simulation of electromagnetic phenomenon is restricted to
fields that can be described by rectilinear coordinates.

The time-dependent Maxwell equations in general curvi-
linear coordinates can be derived by a coordinate transfor-
mation. The most general coordinate transformation in-
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cludes a one-to-one relationship between two sets of
temporal and spatial independent variables. However, for
most practical applications, a coordinate transformation
involving spatial variables is sufficient:

j 5 j(x, y, z)

h 5 h(x, y, z) (6)

z 5 z(x, y, z).

The strong conservation from is obtained by dividing the
chain-rule-differentiated equations by the Jacobian of co-
ordinate transformation and by invoking metric identities
[10]. The strong conservative form of the governing equa-
tions is

­U
­t

1
­Fj

­j
1

­Fh

­h
1

­Fz

­z
5 2 J, (7)

where the transformed dependent variables remained un-
altered but are now scaled by the Jacobian of coordinate
transformation:

U 5 U SBx

V
,
By

V
,
Bz

V
,
Dx

V
,
Dy

V
,
Dz

V D. (8)

The flux vector components Fj , Fh , and Fz in Eq. (7) are
products of the metrics of coordinate transformation and
the Cartesian components, Fj 5 jxFx 1 jyFy 1 jzFz , Fh 5
hxFx 1 hyFy 1 hzFz , and Fz 5 zxFx 1 zyFy 1 zzFz. The
specific expressions are

Fj 5 3
0 0 0 0 2

jz

«V
jy

«V

0 0 0
jz

«V
0 2

jx

«V

0 0 0 2
jy

«V
jx

«V
0

0
jx

Ve
2

jy

Ve
0 0 0

2
jz

Ve
0

jx

Ve
0 0 0

jy

Ve
2

jx

Ve
0 0 0 0

45Bx

By

Bz

Dx

Dy

Dz

6
(9)

Fh 5 3
0 0 0 0 2

hz

«V
hy

«V

0 0 0
hz

«V
0 2

hx

«V

0 0 0 2
hy

«V
hx

«V
0

0
hx

Ve
2

hy

Ve
0 0 0

2
hz

Ve
0

hx

Ve
0 0 0

hy

Ve
2

hx

Ve
0 0 0 0

45Bx

By

Bz

Dx

Dy

Dz

6
(10)

Fz 5 3
0 0 0 0 2

zz

«V
zy

«V

0 0 0
zz

«V
0 2

zx

«V

0 0 0 2
zy

«V
zx

«V
0

0
zx

Ve
2

zy

Ve
0 0 0

2
zz

Ve
0

zx

Ve
0 0 0

zy

Ve
2

zx

Ve
0 0 0 0

45Bx

By

Bz

Dx

Dy

Dz

6,

(11)

where V is the Jacobian of coordinate transformation. In
the finite-volume formulation, it is also the reciprocal of
the local cell volume. The mapping between the physical
and the transformed space is unique, if the Jacobian has
non-zero value within the computational domain:

V 5 det 3
jx hx zx

jy hy zy

jz hz zz
4 (12)

and jx , hx , zx , etc., are the metrics of coordinate transfor-
mation.

III. EIGENVALUES AND EIGENVECTORS

In each temporal and spatial plane t–j, t–h, and t–z,
the eigenvalues are easily found by solving the six-degree



381ALGORITHMS FOR THE MAXWELL EQUATIONS

characteristic equation associated with the coefficient ma-
trices,

lj 5 H2
a

VÏ«e
, 2

a

VÏ«e
,

a

VÏ«e
,

a

VÏ«e
, 0, 0J

(13)

lh 5 H2
b

VÏ«e
, 2

b

VÏ«e
,

b

VÏ«e
,

b

VÏ«e
, 0, 0J

(14)

lz 5 H2
c

VÏ«e
, 2

c

VÏ«e
,

c

VÏ«e
,

c

VÏ«e
, 0, 0J,

(15)
where

a 5 Ïj 2
z 1 j 2

y 1 j 2
x

b 5 Ïh2
z 1 h2

y 1 h2
x

c 5 Ïz 2
z 1 z 2

y 1 z 2
x.

One recognizes that the eigenvalues contain multiplicities,
and hence the eigenvectors are not unique [5, 9,10]. Never-
theless, linearly independent eigenvectors still have been
found by reducing the coefficient matrices to the Jordan
normal form. For consistency, the eigenvectors are selected
in such a fashion that similar matrices of diagonalization
degenerate to the same form as in the Cartesian frame.
From the eigenvector analysis, the similar matrices of
diagonalization in each time-space plane are con-
structed by using eigenvectors as the column arrays as
shown in the following equations. For example, the first
column of the similar matrix of diagonalization,
[2 Ïejy/Ï«a, Ïe (j 2

x 1 j 2
z)/Ï«jxa, Ïejyjz/Ï«jxa, 2 jy/

jx , 0, 1], in the j-t plane is the eigenvector corresponding
to the eigenvalue of lj 5 2a/VÏ«e. Since the similar
matrices of diagonalization, Sj , Sh , and Sz , are non-singular,
the left-hand inverse matrices, S21

j , S21
h , and S21

z are easily
found. They are displayed as

Sj 5 3
2

Ïejy

Ï«a

Ïejz

Ï«a

Ïejy

Ï«a
2

Ïejz

Ï«a
1 0

Ïe(j2
x 1 j2

z)

Ï«jxa

Ïejyjz

Ï«jxa
2

Ïe(j2
x 1 j2

z)

Ï«jxa
2

Ïejyjz

Ï«jxa

jy

jx
0

2
Ïejyjz

Ï«jxa
2

Ïe(j2
x 1 j2

y)

Ï«jxa

Ïejyjz

Ï«jxa

Ïe(j2
x 1 j2

y)

Ï«jxa

jz

jx
0

2
jz

jx
2

jy

jx
2

jz

jx
2

jy

jx
0 1

0 1 0 1 0
jy

jx

1 0 1 0 0
jz

jx

4 (16)

Sh 5 3
2

(h2
y 1 h2

z) Ïe

Ï«hyb
2

hxhz Ïe

Ï«hyb

(h2
y 1 h2

z) Ïe

Ï«hyb

hxhz Ïe

Ï«hyb

hx

hy
0

hx Ïe

Ï«b
2

hz Ïe

Ï«b
2

hx Ïe

Ï«b

hz Ïe

Ï«b
1 0

hxhz Ïe

Ï«hyb

(h2
x 1 h2

y) Ïe

Ï«hyb
2

hxhz Ïe

Ï«hyb
2

(h2
x 1 h2

y) Ïe

Ï«hyb

hz

hy
0

0 1 0 1 0
hx

hy

2
hz

hy
2

hx

hy
2

hz

hy
2

hx

hy
0 1

1 0 1 0 0
hz

hy

4 (17)



382 SHANG AND FITHEN

Sz 5 3
Ïe(z 2

y 1 z 2
z)

Ï«zzc

Ïezxzy

Ï«zzc
2

Ïe(z 2
y 1 z 2

z)

Ï«zzc
2

Ïezxzy

Ï«zzc

zx

zz
0

2
Ïezxzy

Ï«zzc
2

Ïe(z 2
x 1 z 2

z

Ï«zzc

Ïezxzy

Ï«zzc

Ïe(z 2
x 1 z 2

z

Ï«zzc

zy

zz
0

2
Ïezx

Ï«c

Ïezy

Ï«c

Ïezx

Ï«c
2

Ïezy

Ï«c
1 0

0 1 0 1 0
zx

zz

1 0 1 0 0
zy

zz

2
zy

zz
2

zx

zz
2

zy

zz
2

zx

zz
0 1

4 (18)

S21
j 5 3

2(Ï«jy)

2Ïea

Ï«jx

2Ïea
0

2(jxjz)
2a2

2(jyjz)
2a2

j 2
x 1 j 2

y

2a2

Ï«jz

2Ïea
0

2(Ï«jx)

2Ïea

2(jxjy)
2a2

j2
x 1 j 2

z

2a2

2(jyjz)
2a2

Ï«jy

2Ïea

2(Ï«jx)

2Ïea
0

2(jxjz)
2a2

2(jyjz)
2a2

j2
x 1 j 2

y

2a2

2(Ï«jz)

2Ïea
0

Ï«jx

2Ïea

2(jxjy)
2a2

j 2
x 1 j 2

z

2a2

2(jyjz)
2a2

j 2
x

a2

jxjy

a2

jxjz

a2 0 0 0

0 0 0
j 2

x

a2

jxjy

a2

jxjz

a2

4 (19)

S21
h 5 3

2(Ï«hy)

2bÏe

Ï«hx

2bÏe
0

2(hxhz)
2b2

2(hyhz)
2b2

h2
x 1 h2

y

2b2

0
2(Ï«hz)

2bÏe

Ï«hy

2bÏe

h2
y 1 h2

z

2b2

2(hxhy)
2b2

2(hxhz)
2b2

Ï«hy

2bÏe

2(Ï«hx)

2bÏe
0

2(hxhz)
2b2

2(hyhz)
2b2

h2
x 1 h2

y

2b2

0
Ï«hz

2bÏe

2(Ï«hy)

2bÏe

h2
y 1 h2

z

2b2

2(hxhy)
2b2

2(hxhz)
2b2

hxhy

b2

h2
y

b2

hyhz

b2 0 0 0

0 0 0
hxhy

b2

h2
y

b2

hyhz

b2

4 (20)
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S21
z 5 3

Ï«zz

2Ïec
0

2(Ï«zx)

2Ïec

2(zxzy)
2c2

z 2
x 1 z 2

z

2c2

2(zyzz)
2c2

0
2(Ï«zz)

2Ïec

Ï«zy

2Ïec

z 2
y 1 z 2

z

2c2

2(zxzy)
2c2

2(zxzz)
2c2

2(Ï«zz)

2Ïec
0

Ï«zx

2Ïec

2(zxzy)
2c2

z 2
x 1 z 2

z

2c2

2(zyzz)
2c2

0
Ï«zz

2Ïec

2(Ï«zy)

2Ïec

z 2
y 1 z 2

z

2c2

2(zxzy)
2c2

2(zxzz)
2c2

zxzz

c2

zyzz

c2

z 2
z

c2 0 0 0

0 0 0
zxzz

c2

zyzz

c2

z 2
z

c2

4 . (21)

In order to achieve the Riemann formulation, the differen-
tial system must be homogeneous and the coefficients of
equations must also be invariant with respect to the inde-
pendent variables [9]. In the transformed space, eigenval-
ues and eigenvectors of the Maxwell equations contain
metrics of coordinate transformation which are position
dependent. Now the left-hand inverse matrices S21

j , S21
h ,

and S21
z can no longer be brought into the spatial differen-

tial operator without introducing an inhomogeneous term.
Therefore, the characteristic based formulation on curvi-
linear coordinates becomes an approximation to the Rie-
mann problem [4, 5, 9].

IV. FLUX VECTOR SPLITTING

An efficient flux vector splitting algorithm for solving
the Euler equations was developed by Steger and Warming
[19]. The basic concept is equally applicable to any hyper-
bolic differential system for which the solution may not
necessarily be analytic [9, 11]. For inviscid-flow simulations
in computational fluid dynamics, the governing equations
are quasi-linear and the eigenvalues are functions of de-
pendent variables. The formulation is at best an approxi-
mate Riemann problem [11]. Numerical oscillations have
appeared in calculated results using the flux vector splitting
technique when eigenvalues change sign. A refined flux
difference splitting algorithm with a limiter has been devel-
oped to resolve fields with jump conditions [12, 13]. The
newer flux difference splitting algorithm is particularly ef-
fective at points where the eigenvalues vanish. In most
computational electromagnetics applications, the jump
conditions are associated with interfaces of media. The
magnitude of change across the interface is also much less
drastic than the shock waves encountered in supersonic

flows. Perhaps more crucial for electromagnetics, the
polarization of the medium occurs only in the extremely
high frequency range [16, 17]. In general the governing
equations are linear and the eigenvalues of the differential
system are independent of the electromagnetic field.
For this reason, the difference between the flux vector
splitting and flux difference splitting schemes when ap-
plied to the time-dependent Maxwell equations is not
overly significant.

The basic idea of the flux vector splitting of Steger and
Warming is to process data according to the direction of
information propagation [19]. The flux vectors are com-
puted by the point value, including the metrics at the node
of interest. This formulation for solving hyperbolic partial
differential equations not only ensures the well-posedness
of the differential system, but also enhances the stability
of the numerical procedure [4, 11]. Specifically, the flux
vectors Fj , Fh , and Fz will be split according to the sign
of their corresponding eigenvalues. The split fluxes are
differenced by an upwind algorithm to honor the zone of
dependence for an initial-value problem.

The split flux of the three-dimensional Maxwell equa-
tions is not unique, but the sum of the split components
must be unambiguously identical to the flux vector of the
governing equation (7). In the present analysis, the eigen-
vectors are selected in such a fashion that the matrices of
similarity transformation will degenerate to the form of
the Cartesian frame [5, 10]. All flux vectors are split ac-
cording to the signs of the eigenvalues:

Fj 5 F1
j 1 F2

j (22)

Fh 5 F1
h 1 F2

h (23)

Fz 5 F1
z 1 F2

z . (24)
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The flux vector components associated with the positive
and negative eigenvalue are obtainable by straightforward
matrix multiplication:

F1
j 5 Sjl1

j S21
j U

F2
j 5 Sjl2

j S21
j U

(25)

F1
h 5 Shl1

h S21
h U

F2
h 5 Shl2

h S21
h U

(26)

F1
j 5 3

j 2
y 1 j 2

z

2Ï«eVa

2(jxjy)

2Ï«eVa

2(jxjz)

2Ï«eVa
0

2jz

2«V
jy

2«V

2(jxjy)

2Ï«eVa

j 2
x 1 j 2

z

2Ï«eVa

2(jyjz)

2Ï«eVa

jz

2«V
0

2jx

2«V

2(jxjz)

2Ï«eVa

2(jyjz)

2Ï«eVa

j 2
x 1 j 2

y

2Ï«eVa

2jy

2«V
jx

2«V
0

0
jz

2Ve
2jy

2Ve
j 2

y 1 j 2
z

2Ï«eVa

2(jxjy)

2Ï«eVa

2(jxjz)

2Ï«eVa

2jz

2Ve
0

jx

2Ve
2(jxjy)

2Ï«eVa

j 2
x 1 j 2

z

2Ï«eVa

2(jyjz)

2Ï«eVa

jy

2Ve
2jx

2Ve
0

2(jxjz)

2Ï«eVa

2(jyjz)

2Ï«eVa

j 2
x 1 j 2

y

2Ï«eVa

45Bx

By

Bz

Dx

Dy

Dz

6 (28)

F2
j 5 3

2(j 2
y 1 j 2

z)

2Ï«eVa

jxjy

2Ï«eVa

jxjz

2Ï«eVa
0

2jz

2«V
jy

2«V

jxjy

2Ï«eVa

2(j 2
x 1 j 2

z)

2Ï«eVa

jyjz

2Ï«eVa

jz

2«V
0

2jx

2«V

jxjz

2Ï«eVa

jyjz

2Ï«eVa

2(j 2
x 1 j 2

y)

2Ï«eVa

2jy

2«V
jx

2«V
0

0
jz

2Ve
2jy

2Ve
2(j 2

y 1 j 2
z)

2Ï«eVa

jxjy

2Ï«eVa

jxjz

2Ï«eVa

2jz

2Ve
0

jx

2Ve
jxjy

2Ï«eVa

2(j 2
x 1 j 2

z)

2Ï«eVa

jyjz

2Ï«eVa

jy

2Ve
2jx

2Ve
0

jxjz

2Ï«eVa

jyjz

2Ï«eVa

2(j 2
x 1 j 2

y)

2Ï«eVa

45Bx

By

Bz

Dx

Dy

Dz

6 (29)

F1
z 5 Szl1

z S21
z U

F2
z 5 Szl2

z S21
z U.

(27)

The split flux vectors in the respective j–t, h–t, and z–t
planes are obtained by straightforward matrix multiplica-
tion and are given as
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F1
h 5 3

h 2
y 1 h 2

z

2Ï«ebV

2(hxhy)

2Ï«ebV

2(hxhz)

2Ï«ebV
0

2hz

2«V
hy

2«V

2(hxhy)

2Ï«ebV

h 2
x 1 h 2

z

2Ï«ebV

2(hyhz)

2Ï«ebV

hz

2«V
0

2hx

2«V

2(hxhz)

2Ï«ebV

2(hyhz)

2Ï«ebV

h 2
x 1 h 2

y

2Ï«ebV

2hy

2«V
hx

2«V
0

0
hz

2Ve
2hy

2Ve
h 2

y 1 h 2
z

2Ï«ebV

2(hxhy)

2Ï«ebV

2(hxhz)

2Ï«ebV

2hz

2Ve
0

hx

2Ve
2(hxhy)

2Ï«ebV

h 2
x 1 h 2

z

2Ï«ebV

2(hyhz)

2Ï«ebV

hy

2Ve
2hx

2Ve
0

2(hxhz)

2Ï«ebV

2(hyhz)

2Ï«ebV

h 2
x 1 h 2

y

2Ï«ebV

45Bx

By

Bz

Dx

Dy

Dz

6 (30)

F2
h 5 3

2(h 2
y 1 h 2

z)

2Ï«ebV

hxhy

2Ï«ebV

hxhz

2Ï«ebV
0

2hz

2«V
hy

2«V
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Although the split flux vectors may have a wide range of
variation from different selections of linearly independent
eigenvectors, the present result is internally consistent. The
judiciously selected eigenvectors have ensured that if the
coordinate system degenerates into the Cartesian frame,
the split flux vectors will reduce accordingly (4, 5). This
assertion can be verified easily by observing that all ele-
ments of the split flux vectors contain the definitive metrics
of coordinate transformation jx , hy , and zz in the denomi-
nator. Therefore, the split flux vectors of the present effort
can be adopted as the foundation for future characteristic-
based finite-difference approximations to Maxwell equa-
tions in the time domain. This formulation not only permits
the numerical reproduction of piecewise continuous solu-
tion, but also enhances the stability of numerical ap-
proaches [19].

V. FINITE-DIFFERENCE APPROXIMATION

Once the detailed split fluxes are known, formulation
of the finite-difference approximation is straightforward.
From the sign of an eigenvalue, the stencil of a spatially
second-order accurate windward differencing can easily be
constructed to form multiple one-dimensional difference
operators [4, 5]. The split flux vectors are evaluated at
each discretized point of the field according to the signs
of the eigenvalues:

If l , 0, DUi 5 [23Ui 1 4Ui11 2 Ui12]/2 (34)

If l . 0, =Ui 5 [13Ui 2 4Ui21 1 Ui22]/2. (35)

All metrics of the coordinate transformation are calculated
by central differencing, except at the edges of the computa-
tional domain, where one-sided differencing are used. Al-
though the fractional-step or the time-splitting algorithm

[20, 21] has demonstrated greater efficiency in data stor-
ages and higher data processing rates than predictor–
corrector time integration procedures [4, 5], it is not imple-
mented here. For the purpose of comparison, the
Runge–Kutta family of single-step, multi-stage proce-
dures, is employed to be consistent with the accompanying
characteristic-based finite-volume method [10, 22]. In the
present effort, a two-stage, formally second order accurate
scheme is used:

U0 5 Un

U1 5 U0 2 DU(U0)

U2 5 U0 2 0.5(DU(U1) 1 DU(U0))

Un11 5 U2 .

The resultant characteristic-based finite-difference scheme
for solving the three-dimensional Maxwell equations in
the time domain is second-order accurate in both time
and space.

The most significant feature of the flux vector splitting
scheme lies in its ability to easily suppress reflected waves
on the truncated computational domain. In wave motion,
the compatibility condition at any point in space is de-
scribed by the split flux vector [4, 5, 10]. In the present
formulation, an approximated no-reflection condition can
be achieved by setting the incoming flux component to
zero:

lim
rRy

F1 5 0 or lim
rRy

F2 5 0. (36)

The one-dimensional compatibility condition is exact when
the wave motion is aligned with one of the coordinates.
This unique attribute of the characteristic-based numerical



387ALGORITHMS FOR THE MAXWELL EQUATIONS

procedure in removing a fundamental dilemma in compu-
tational electromagnetics will be demonstrated in detail
later.

VI. FINITE-VOLUME APPROXIMATION

The finite-volume approximation is solved for the gov-
erning equation, Eq. (7), in the discretized form

DU
Dt

1
DF
Dj

1
DG
Dh

1
DH
Dz

2 J 5 0. (37)

In the present cell-centered finite-volume scheme, the inte-
gration procedure degenerates into balancing the flux vec-
tors on interfaces of discretized cells [10]. In essence, the
numerical procedure needs only to evaluate the sum of all
flux vectors aligned with surface area vectors [10–13]. Only
one of the vectors is required to coincide with the outward
normal of the cell surface and the rest of the orthogonal
triad can be derived to lie on the same surface. The metrics,
or more appropriately the direction cosines, of any points
within the cell are uniquely determined by the nodes and
edges of the elementary volume. This feature is distinct
from a point value derived from adjacent nodes, as in
the finite-difference approximation. The shape of the cell
under consideration and the stretching ratio of neighbor
cells [14] can lead to a significant deterioration of the accu-
racy of cell-centered finite-volume schemes.

An outstanding aspect of the finite-volume scheme is
the elegance of its flux splitting process.The flux difference
splitting for Eq. (37) is greatly facilitated by a locally or-
thogonal system in the transformed space [12, 13]. In this
new frame of reference, eigenvalues and eigenvectors, as
well as metrics of the coordinate transformation between
two orthogonal systems, are well known [4, 5]. The inverse
transformation is simply the transpose of the forward map-
ping. Particularly, the flux vectors in the transformed space
have the same functional form as that of the Cartesian
frame, the difference is a known quantity and is defined
by the product of the surface outward normal and the cell
volume V 3 =S/i=Si [10]. Therefore, the flux vectors can
be split in the transformed space according to the sign of
the eigenvalues, but without detailed knowledge of the
associated eigenvectors. For this reason, finite-volume
schemes are widely used in the CFD community and led
the CEM development for solving problems cast in general
curvilinear coordinates.

The present formulation [10] adopts the van Leer’s
Kappa scheme in which different flux vectors can be recon-
structed on the cell surface from the piecewise data of
neighboring cells [12, 13]. The spatial accuracy of this
scheme spans a range from first-order to third-order up-
wind biased approximations. The time integration is car-
ried out by a two-stage Runge–Kutta method identical to

that of the present finite-difference procedure [22]. The
finite-volume procedure is therefore second-order accurate
in time, and up to third-order accurate in space [10, 12,
13]. For the present purpose only the second-order up-
winding and the third-order upwind biased options are
exercised. The former is the nearest equivalent to the flux
vector splitting finite-difference scheme; the latter is for-
mally one order of magnitude more accurate in spatial res-
olution.

VII. NUMERICAL PROCEDURE

Wave motion confined within a three-dimensional rect-
angular wave guide is first simulated. For this phenomenon,
the closed form solution of the time-dependent Maxwell
equations is known (17, 18). The present results attempt
to duplicate the commonly designated TE(1,1) transverse
wave. Since the 3D electromagnetic wave is specified to
propagate along the z coordinate, all the components of
electric and magnetic fields contain a common sinusoidal
function of time and z. The pertinent initial and boundary
conditions are presecribed as follows: The incident wave
is completely specified at the computational boundary for
each time step. The vanishing F2

z compatibility is imposed
as the no-reflection condition at the exit plane. Only the
x component of the magnetic flux density, Bx , is presented
in Fig. 1. The second-order accurate results by both the
finite-volume and the finite-difference schemes are de-
picted, together with the theoretical result. For simple wave
propagation along a coordinate, total suppression of re-
flected waves is achieved by the characteristic-based
schemes. The attribute of computational accuracy of the
windward procedures is also reflected by the increased
dissipative and dispersive errors as the wave frequency is

FIG. 1. Comparison of finite-difference and finite-volume solutions
for a rectangular waveguide.
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increased. In other words, if the time-dependent simulation
is not supported by a suitable grid density, the truncation
error can be significant. This behavior can be anticipated
from the error analysis (12, 13). However, attention should
be focused on the fact that in a regular and uniform mesh
system, there is no difference in numerical behavior be-
tween these two distinctive and yet equivalent schemes.

The oscillating electric dipole is selected as the basic
validation problem for which the analytic solution is known
[17, 18]. At the pole, the solution is singular, which poses
a severe test of algorithms in resolving steep gradients
within the field. In fact, in a spherical coordinate system,
the induced magnetic and electric intensities exhibit singu-
lar behavior proportional to the inverse square and cubic
powers, respectively, of the radial distance, r, to coordinate
origin [17, 18]. The designated radiative phenomenon is
also ideal to illustrate how simply one-dimensional compat-
ibility can be used to provide an accurate no-reflection
condition on the truncated computational boundary. One-
dimensioal compatibility can always be derived by a coordi-
nate mapping in which one of the coordinates is made to
align with the axis of wave motion. Since the dipole is a
spherically symmetric radiating phenomenon, the electro-
magnetic wave is already known to propagate along the
radial coordinate in the farfield. The no-reflection condi-
tion at the truncated boundary is achieved easily by setting
the incoming radial flux component to zero at the two
outermost nodes. Most importantly, the compatibility con-
dition of the initial-value problem is satisfied automatically
to the same order of magnitude as the solving scheme.

The initial values of the present numerical simulation
are described by the analytic solution at the pole and for
at least two adjacent nodes [17, 18]. The additional nodes
are included to ensure that physically meaningful values
are provided to the three-point windward formulation.
Two more overlapping numerical boundary conditions also
imposed in the azimuthal and circumferential directions.
These boundary conditions are included just to meet the
numerical requirement for computations.

Three mesh systems, (25, 24, 48), (37, 36, 72), and (49,
48, 96), were used to perform the comparative study. By
scaling the independent and dependent variables to the
ranges of unity, the coarsest mesh system does not satisfy
the marginal requirement (10 nodes per wavelength) for
resolving a wave motion [1, 2]. For the purpose of compar-
ing two conceptually different numerical procedures, the
finite-difference calculations were performed on nodes that
are located at the cell center of the finite volume calcula-
tions. Therefore, the mesh systems between two algorithms
are slightly different but within the uncertainty limit of
discretization.

All computations were processed either on a Cray
Y-MP8/8128 or on a C916/16256 system. For comparison
of numerical efficiency, the data processing rates (DPR)

and central processing unit times (CPU) required to ad-
vance the solution for one characteristic time period were
recorded. The characteristic time, Tch , is defined as the time
required for a wave to transverse the entire computational
domain. Results are shown in Table I.

In general, the third-order upwind biased scheme (FV3)
is the most efficient among the three procedures investi-
gated for two reasons. First, this scheme has a more favor-
able stability property than both second-order windward
finite-difference (FD2) and finite-volume (FV2) proce-
dures. The allowable time step is nearly double that of
the two second-order schemes. Second, the formulation of
finite volume schemes yields a greater averaged vector
length (34.7 vs 27.7) in arithmetic operations than the finite
difference code. The data processing rates of finite-differ-
ence and finite-volume schemes reflect the numerical ad-
vantage in vector processing by the latter. On the finest
mesh, direct comparison of solutions of the two second-
order windward procedures indicates that the FD2 scheme
requires 46.9% less CPU time than the FV2 scheme to
process the same amount of data. The FV2 procedure
reveals a slightly more favorable stability property than
the FD2 scheme.

VIII. DISCUSSION OF NUMERICAL RESULTS

Although the numerical simulation has been scaled to
make the temporal and spatial increments of the same
order of magnitude, demonstration of the formal order
of numerical accuracy still has not been achieved. The
uncertainty is incurred by the demanding precision in con-
trol of the allowable time steps of three numerical proce-
dures (FD2, FV2, and FV3) on different mesh systems,
and by the magnified difference of initial values via the
singular behavior at the pole. Therefore, the numerical
results are examined at selected locations in space, the

TABLE I

Comparison of Numerical Performance

FD2 FV2 FV3

YMP (25, 24, 48)
DPR (Mflops) 105.6 132.5 148.5
Vector length NA NA NA
CPT (s) 298.58 396.26 181.14

YMP (37, 36, 72)
DPR (Mflops) 132.5 168.8 168.8
Vector length NA NA NA
CPT (s) 1496.03 2315.79 1039.94

C90 (49, 48, 96)
DPR (Mflops) 242.3 365.9 364.3
Vector length 27.7 34.7 33.4
CPT (s) 2358.25 3464.32 1558.95
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time trace of field variables, and a point spectral analysis.
From these analyses, a superior numerical procedure will
be identified and mapped onto a distributive memory
multicomputers [23, 24] for engineering applications [25].

The calculated magnetic and electric components of field
intensities Bx , Dy , and Dz on the coarse mesh system (25,
24, 48) are depicted in Figs. 2, 3, and 4. For the radiating
problem, the z-component of the magnetic intensity is
identical to zero. Numerical results correctly exhibit a value
less than 10210 in magnitude and are not presented. Numer-
ical results generated by the three procedures FD2, FV2,
and FV3 are collected at the instant when the time elapsed
t 5 1.5025 Tch . Data are sampled along a radial way (u 5
79.5, f 5 184) from near the pole to the truncated bound-
ary. For all calculations, the initial value is specified only
for mesh points that have a radial distance less than r 5
0.1513 from the pole. The computational domain is
bounded by two concentric spheres having the radii range
of 0.1513 , r , 1.00. In Fig. 2, a comparison of the com-
puted x-component of the magnetic intensity with the the-
ory [17, 18] is given. The results of the third-order accurate
finite-volume scheme attains the best agreement with the
theory as expected. Under the conditions of merely 10 cells
per wavelength and 1/r2 singular behavior approaching the
dipole, the maximum relative error is still confined to
within 1%. The solution produced by the second-order
windward finite-volume scheme shows a maximum discrep-
ancy of 5.02% at r 5 0.7133 from the theoretical result.
The counterpart of the second-order finite-difference ap-
proximation performs much better. The accuracy of solu-

tion by the FD2 scheme approaches that of the formally
third-order finite volume scheme, FV3.

On the coarse mesh system (25, 24, 48), the calculated
electric field components are anticipated to exhibit greater
disparity with respect to the theoretical value, because the
theoretical result contains higher order singular behavior

FIG. 2. Instantaneous distribution of Bx , (25, 24, 48) grid. FIG. 3. Instantaneous distribution of Dy , (25, 24, 48) grid.

FIG. 4. Instantaneous distribution of Dz , (25, 24, 48) grid.
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at the dipole than the magnetic intensity [17, 18]. The
leading term of this singularity now appears as the inverse
cubic power of the radial distance from the dipole. Distri-
butions of numerical results along a radial ray indeed show
a greater deviation from theory. In addition, the peculiar
behavior of phase error associated with time dependent
problems is now very pronounced in Fig. 3. The truncation
error of computed x and y electric displacement compo-
nents appears as a large shift of the computed profiles at
the node immediately adjacent to which the initial values
are imposed. The error pattern of the calculated results is
nearly identical; thus only the y-component of the electric
displacement is presented. Again in Figs. 3 and 4, the FV2
solution contains the largest error in predicting the electric
field. As in the calculation of the magnetic fields, the coun-
terpart FD2 scheme is able to generate a superior result
approaching that of the FV3 scheme on spherical coordi-
nates. Away from the inner computational boundary, the
maximum error of the z-component electric field by the
FV2 scheme, in Fig. 4, is located at r 5 0.6268 and has
a relative magnitude of 9.09%. This is also the greatest
discrepancy observed from all calculations from the coars-
est mesh system.

It may be interesting to note that in the coarsest mesh
system, all results generated by the formally second-order
accurate finite-difference scheme approach that of the
third-order finite-volume procedure. The present nu-
merical result seems to substantiate the assertion that the
studied finite-volume procedure will suffer accuracy degra-
dation on the excessively stretched non-rectangular quad-
rilateral grids [14]. In spite of that, all numerical solutions

by both the second-order windward procedures, FV2 and
FD2, suppress the reflected wave at the farfield boundary
for the oscillating electric dipole. This observation can be
made uniformly for all computed results of the electromag-
netic field.

Refinement to a (37, 36, 72) grid, the specific comparison
of numerical results yields little additional insight. Once
sufficient numerical resolution is secured, the differences
between numerical and theoretical results are indistin-
guishable in the plotting scale. Only three instantaneous
field variables, the x-component of the magnetic and the
y- and z-components of the electric field, are presented
in Figs. 5, 6, and 7 respectively. These calculations were
performed on the (49, 48, 96) grid system, and results
are displayed at the instant t 5 1.5023 Tch . In Fig. 5, the
maximum discrepancy between theory and numerical re-
sults is produced by the FV2 scheme at a relative error of
0.395% at r 5 0.7332. For the same calculation, error of
the FD2 scheme is about half that of the FV2 scheme, a
value of 0.211%.

The y- and z-components of the electric displacement
are given in Figs. 6 and 7, respectively. The improvement
of computational accuracy is clearly demonstrated by the
grid point density enrichment. In Fig. 6, the FD2 scheme
exhibits a slightly better predicted value than the FV2
scheme, a small difference of less than 0.9% from the exact
local result [18, 19]. Fig. 7 depicts the role reversal in
numerical error generation by the two second-order
schemes. The maximal disparity in calculating the z-com-
ponent of the electric field is generated by the FD2 schemeFIG. 5. Instantaneous distribution of Bx , (49, 48, 96) grid.

FIG. 6. Instantaneous distribution of Dy , (49, 48, 96) grid.
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with a value of 2.404% at r 5 0.6268, and the error of the
counterpart FV2 scheme is only half the value. In short,
if at least 15 nodes per wavelength are provided for resolv-
ing the wave motion, the second-order finite-difference
and the finite-volume procedure have results of compara-
ble accuracy.

The most important feature of eliminating reflected
waves from the truncated boundary by the characteristic-
based numerical procedure is repeatedly demonstrated in
Figs. 5, 6, and 7. The second-order accurate windward
procedures, in either the finite-volume or the finite-differ-
ence approach, use the precise stencil needed to enforce
the zone of dependency according to the characteristic
theory. The compatibility condition is met by simply impos-
ing a vanishing incoming flux component at the truncated
boundary. Within the limit of truncation error, no reflected
wave from the farfield boundary is detected. This observa-
tion can be made uniformly from all comparisons of these
instantaneous numerical simulations with theory at the
truncated boundary, r 5 1.0. On the other hand, the third-
order windward-biased scheme reconstructs the split flux
on an interface by an interpolation process which includes
data beyond the physical domain of dependence [10, 12,
13]. The perfect no-reflection condition is not achieved.
Sustained research efforts will be devoted to this issue until
it is resolved.

The temporal variation of all simulated electromagnetic
field components is very similar. Therefore, only two typi-
cal samplings of the time traces at a field point for a dura-
tion of 2.35 Tch are given. In Fig. 8, the time traces of the

computed z-component electric intensities near the middle
field (r 5 0.4107, u 5 79.5, f 5 184) are depicted together
with the theoretical values on the (25, 24, 48) grid system.
The transient period for propagating data to reach the
sampling point is clearly illustrated. The two second-order
windward procedures, FD2 and FV2, receive and transmit
the directional information simultaneously at the sampled
physical location and the third-order finite-volume scheme
shows a slight delay. As it has been pointed out earlier,
the FV2 scheme produces the greatest dissipative and
phase error on the coarsest mesh system. All numerical
procedures, FD2, FV2, and FV3, reveal a leading phase
error at a time-step size Dt 5 1.02436 3 1023 s.

On the finest mesh system (49, 48, 96), the time trace
of the z-component of the electric intensity at the point
(r 5 0.4144, u 5 79.5, f 5 184) is presented in Fig. 9. The
basic numerical behavior is very similar to that observed in
the coarsest mesh computations, except that the deviation
from theory is much smaller. The difference among the
three investigated numerical results is indistinguishable on
the plotting scale. All numerical results duplicate accu-
rately the theoretical value after an elapsed time of 1.35
Tch . After the transient period, the amplitude of the wave
motion is sustained within a fraction of one percent of
the theoretical value and the relative leading phase error
is negligible.

In order to obtain a quantified comparison of the charac-
teristic-based schems on three mesh systems, a point spec-
tral analysis is performed. Through this analysis, the trun-
cation error of the numerical results can be studied to
determine the dissipative and the dispersive behavior at

FIG. 7. Instantaneous distribution of Dz , (49, 48, 96) grid.

FIG. 8. Time trace of Dz , (25, 24, 48) grid.
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any point in the field. The analysis is too time consuming
to apply to all computed dependent variables over the
entire field. Therefore, the spectral analysis is only per-
formed for a few randomly selected points from the three
mesh systems. Since the mesh systems are not shared be-
tween the finite-difference and the finite-volume schemes
and scaled to an unit sphere, data sampling at a common
point among six grid systems is not attempted at present.
Instead the point spectral analyses are conducted along
the ray defined by u 5 79.5, f 5 184, and 0.4107 , r ,
0.4144. A two-hundred term Fourier series is used to per-
form the spectral analysis. The data sample includes the
transient state to reflect the worst possible error and pro-
vides the longest period for high temporal resolution.

Figure 10 presents a comparison of the point spectral
results on the (25, 24, 48) mesh system. The analysis is
conducted for the z-component of electric intensity. The
computed results compared with the theory exhibit a per-
sistent leading phase error from the lowest frequency mode
to higher harmonics. The relative phase errors of the FD2,
FV2, and FV3 at the primary frequency are 1.0553, 1.1044,
and 1.0465, respectively. The error in computed amplitude
is exaggerated by including the overwhelming difference
during the transient period (see Fig. 8), but it still reflects
correctly the relative dissipative error of the three schemes
investigated. On the coarsest grid system, numerical results
by the second-order finite volume scheme contain higher
dissipative and dispersive errors than the finite-difference
counterpart. The numerical result generated by the FV3
scheme possesses the least dispersive and dissipative er-

rors. The magnitude in under-predicted wave amplitude
by the FV3 scheme is less than half to that of the FV2
procedure. The difference between results of FD2 and FV3
is 2.284%.

The point spectral analysis of the z-component electric
intensity on the (37, 36, 72) mesh system is given in Fig.
11. On this mesh system, numerical results of the three

FIG. 9. Time trace of Dz , (49, 48, 96) grid. FIG. 10. Spectral analysis of Dz , (25, 24, 48) grid.

FIG. 11. Spectral analysis of Dz , (37, 36, 72) grid.
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studied procedures are essentially identical. The relative
phase errors associated with the FD2, FV2, and FV3
schemes are 1.0247, 1.0269, and 1.0247, respectively. The
mesh distribution for these computations ensures that each
wavelength is supported by 15 nodes. In this circumstance,
the relative phase errors of FD2 and FV3 are identical.
The difference in the primary wave amplitude predictions
from FD2 and FV2 procedures is only 0.158%, favoring
the finite-difference scheme. The third-order finite-volume
scheme still produces the best agreement with the theoreti-
cal value in calculated amplitude of the dominant fre-
quency.

Figure 12 depicts the comparison of results from the
spectral analysis on the finest mesh system (49, 48, 96).
Now all relative phase errors from three numerical proce-
dures are reduced even more significantly. Both the sec-
ond-order schemes FD2 and FV2 show a value of 1.0044,
and the magnitude of the error for the third-order finite-
volume scheme yields a surprisingly higher value of 1.0054.
The higher value of dispersive error from the FV3 scheme
may result from the inadequate implementation of the
compatibility condition previously mentioned. This issue
will be continuously pursued until improvement is ob-
tained. Among the three numerical results, the calculated
amplitudes at the principal frequency have a maximum
difference of 0.3701%. Now the best result is generated
by the second-order finite-volume scheme, which in part
reflects its more rapid response to the perturbation in the
transient period than that of the FV3 scheme. This particu-
lar behavior has been pointed out in the discussion of Figs.

8 and 9. In summary, all results from the point spectral
analyses have substantiated fully the earlier observations
made by studying the instantaneous values in space and
the time trace of selected field variables.

IX. CONCLUSIONS

A three-dimensional finite-difference flux vector split-
ting procedure for solving the Maxwell equations in the
time domain has been successfully developed. In particular
a detailed eigenvector analysis is completed and verified
for the Maxwell equations in a general curvilinear coordi-
nate. This formulation can be used as the basic framework
for future finite-difference flux splitting procedures. All
characteristic-based methods both the finite-difference and
finite-volume procedures produced excellent results when
applied to an oscillating electric dipole problem. Within the
limit of numerical error, the second-order characteristic-
based methods with honor the physical zone of depen-
dence, suppress completely the reflected wave from the
truncated computational boundary.

On a highly stretched and non-rectangular quadrilateral
mesh system, finite-volume schemes reveal degradations
in numerical accuracy. The numerical error appears as a
leading phase error. Once a sufficient number of cells have
been provided to resolve wave motion (15 nodes per wave-
length), the dissipative and dispersive error are substan-
tially reduced. Two second-order windward finite-differ-
ence and finite-volume procedures generated solutions of
comparable accuracy.
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